環境戦略

当社グループは、2050年カーボンニュートラルに向けて、 社会的価値と経済的価値の創造を両立させる取り組みを進 めています。中期経営計画2028では、環境配慮型燃料や再 エネ電源の導入拡大、ZEB/ZEH化率向上、環境保全に資す る技術開発、脱炭素関連事業の推進、環境情報開示の充実の 5つをテーマに実践していきます。KPIとして設定した2028 年度のCO2排出量、2022年度比Scope1+2:▲32%、 Scope3:▲20%を目標に活動を進め、脱炭素社会、自然共生 社会への貢献と循環型社会形成の推進に取り組んでいきます。

環境方針 (2021年9月制定)

持続可能な社会を実現するために、社会インフラ建設 の担い手として、グループの力を結集し、事業活動の 環境負荷低減を進め、脱炭素・循環型・自然共生社会 の実現に貢献していきます。

「5つの環境ミッション」

- 1. 地球温暖化防止のために 「脱炭素社会」の実現 に向けた取り組みを推進します。
- 2. 事業における「循環型社会」の形成を推進します。
- 3. 「自然共生社会」の実現のために、生物多様性へ の影響に配慮した取り組みを推進します。
- 4. 環境に配慮した技術開発の推進ならびにその 展開を図ります。
- 5. 環境教育を推進し、グループ全社員の環境意識 の向上を図るとともに、環境マネジメントを継続 的に改善します。

TCFD提言に基づく情報開示

当社グループは、2022年3月18日に気候関連財務情報開示タスクフォース(以下、TCFD)の提言に賛同し、TCFD提言に則っ た情報開示を行っています。2024年5月に目標設定の変更による見直しを行いました。

ガバナンス

当社グループは、サステナビリティ委員会の中に、環境課 題に関して、事業活動に中長期的に影響を与える要因を特定 し、その課題への基本方針や戦略の策定、目標の進捗報告、 施策の審議などを通じて、地球環境の保全と向上を推進する 機関として、社長を委員長とした経営層をメンバーとする 「環境戦略委員会 | を設置しています。

委員会は半期に1回開催し、気候変動を含む環境戦略に関 わる具体的な基本方針および計画の策定に関する事項、教 育・研修に関する事項、サステナブルな経営実施状況の検証 に関する事項の審議決定を行い、重要な事項はサステナビリ ティ委員会でとりまとめ、経営会議で審議した上で取締役会 に付議し社内決定を行います。

リスク管理

当社グループは、環境戦略委員会事務局が中心となり、各部 門と連携して「環境戦略委員会」で気候変動に関連するリス クと機会について議論し、評価しています。その対応策につ いては、「環境戦略委員会」で実施状況を検証し、改善します。

「環境戦略委員会 | で検証した気候変動に関連する主要な リスクについては、「リスク管理委員会 | において、他のリス クとともに審議し、重要な事項については取締役会に報告ま たは付議し審議します。

気候変動に関するガバナンス体制

TCFD提言に基づく情報開示

戦略

当社グループは、土木事業、建築事業、新規事業を対象に、 気候変動に関連する中長期的なリスクと機会を特定していま す。特定したリスクと機会に対しては、複数のシナリオ分析 (下記参照)により、2030年と2050年において当社の事業 に与える財務影響(大・中・小の3段階で評価)について検討し ました。

なお、財務影響の重要なものについては、対応策を策定 し、年度ごとに進捗状況を把握するとともに、社会の動向を 踏まえ見直しを図っていきます。

シナリオ分析

TCFDの提言に基づき、政策や市場の動向(移行リスク・機会)に関する分析と、災害などの物理的変化(物理的リスク・機会)に関する分析を行いました。

	4℃シナリオ	1.5℃ / 2℃未満シナリオ				
移行 リスク	STEPS 公表政策 シナリオ ※ 国際エネルギー	表政策 表明公約 2050ネットゼロ				
	SSP5-8.5	SSP1-1.9	SSP1-2.6			
物理的リスク	※ 気候変動に関する政府間パネル(IPCC) が策定 SSP5-8.5、SSP3-7.0、SSP2-4.5、SSP1-2.6、SSP1- 1.9の5つが選択されており、値が多いほど将来の気温上 昇が大きいシナリオとなる					

事業への影響と対応策

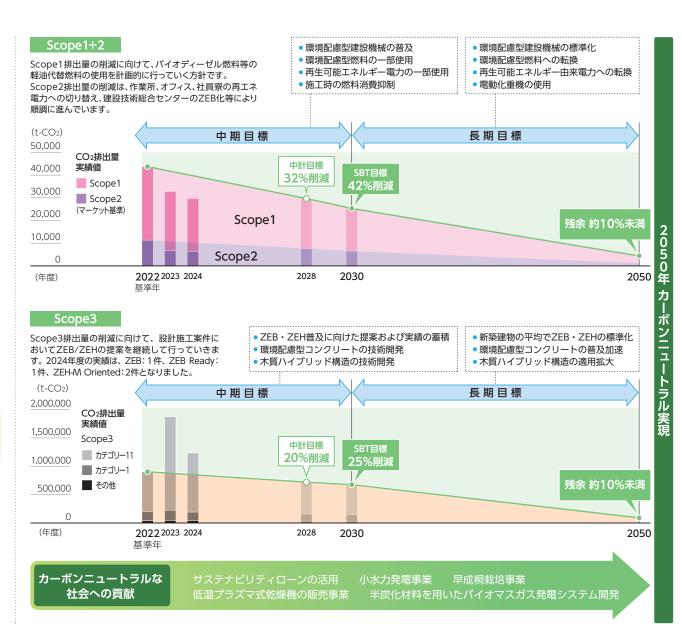
主要なリスクと機会		i+>11フロト総合	事業への影響	影響度		対応策	
		はリスクと成立	争未べの影響	2030年	2050年	X)心束	
移 行 -	リスク	カーボン プライシング	施工時のCO2排出に賦課される 炭素税の増加 セメントや鉄製造時の炭素税賦課による コスト増 建設コスト上昇に伴う投資抑制による需要減	大	大	 施工中のCO2削減推進 (再生可能エネルギー・次世代燃料への転換等) コンクリート等低炭素資材の開発、提案力強化 木造・木質化建築物の技術開発 	
		顧客企業の 価値観の変化	温室効果ガス (GHG) 排出量の多い会社の 受注機会減	大	大	施工中のCO2削減推進 (再生可能エネルギー・次世代燃料への転換等)ZEB・ZEH等の提案力・設計力強化	
		サーキュラー エコノミーの進展	グリーン資材増加によるコスト増	小	ф	• グリーン調達コストを考慮した提案力強化	
	機会	顧客企業の 価値観の変化	CO2排出量の少ないインフラ市場 (木造・木質化・ZEB・ZEH等)の拡大	大	大	低炭素資材の開発、提案力強化木造・木質化建築物の技術開発ZEB・ZEH等の提案力・設計力強化	
		サーキュラー エコノミーの進展	不用材の活用に対する世の中の需要増	小	中	• バイオマスガス化発電向けの半炭化製造装置 および半炭化燃料材等の開発	
		世の中の 価値観の変化	カーボンニュートラルな 交通インフラ関連工事の需要増	中	大	鉄道関連工事の技術力強化	
		エネルギー ミックス	再生可能エネルギー関連工事(バイオマス・ 小水力発電等)の需要増	小	小	• 再エネ関連工事(バイオマス・小水力発電等) への取り組みと提案力強化	
物理的	IJ	平均気温の上昇 および海面の上昇	作業環境悪化に伴う対策コスト増	大	大	● ロボット・ICT・AIを活用した省人化	
	リスク	自然災害の 激甚化	自然災害の影響による資材の調達難	小	小	サプライヤーとの連携強化サプライヤーのBCP対策を把握した上で 材料を選定	
	機	平均気温の上昇 および海面の上昇	海抜の低い地域からの移転需要の発生、 海岸堤防工事、移転工事の需要増	小	ф	防災・減災、BCPに関連する工事の 提案力強化	
	会	自然災害の 激甚化	大雨・洪水関連工事の需要増 災害対策用としてのバイオマス発電設備等の 需要増	小	ф	大雨・洪水関連工事に対する 技術開発の推進、工事提案力の強化災害対策用再エネ発電設備の営業力強化	

TCFD提言に基づく情報開示

指標と目標

GHG(主にCO₂)の排出量削減目標

当社グループの2022年度のScope1+2排出量は43,942 t-CO2、Scope3排出量は901,538t-CO2でした。当社グループは、2030年のGHG排出量削減目標および、2050年の長期目標を設定し、事業活動におけるGHG排出量削減の取り組みを推進しています。今後も、より多くのGHG排出量削減のため、短中期の目標の見直しを適時行っていきます。


カーボンニュートラルに向けた移行計画

当社グループのGHG排出量について、2050年カーボンニュートラルに向けて移行計画を策定しています。温室効果ガス排出削減目標を「1.5℃水準」に設定し、SBTi (Science Based Targets initiative)から2030年までの目標について認定を受けています。また、2050年にはカーボンニュートラルをめざします。なお、2050年はSBTiによる「The Corporate Net-Zero Standard」に則り、中和(炭素除去など)により相殺する残余排出量を約10%未満とします。

CO₂排出量 (t-CO₂)

	_	Sco	_	
年度	Scope1	マーケット 基準	ロケーション 基準	Scope3
2020	25,114	_	8,566	
2021	20,194	_	8,578	
2022	32,412	11,530	14,994	901,538
2023	26,045	6,883	14,744	1,874,518
2024	23,405	6,442	13,505	1,234,742

- ※ Scope1、2は2021年度までは国内単体のみの集計
- ※ マーケット基準:実際に契約している電気メニューに応じた排出係数を利用
- ※ ロケーション基準: 地域・国等の区域内における発電に伴う平均排出係数を利用

持続可能な社会に向けた取り組み

SBT認定の取得

2024年2月、2030年の温室効果ガス削減目標において、 SBTiより1.5℃水準でのSBT認定を取得しました。

SBT (Science Based Targets) は、パリ協定の求める水準と整合した温室効果ガスの削減目標を指し、CDP、UNGC (国連グローバルコンパクト)、WRI (世界資源研究所)、WWF (世界自然保護基金) らが共同イニシアティブする SBTi が設定しています。

当社グループは2030年に向け、Scope1、2を2022年度比で42%削減、Scope3を2022年度比で25%削減という目標を設定し取り組みを進めています。

CDP質問書への対応および評価

当社は、国際的な非営利団体CDPの気候変動部門で2023年度と2024年度に連続して最高評価のAリストに選定されました。また、サプライヤーエンゲージメント評価でも2年連続で最高評価の「サプライヤーエンゲージメント・リーダー」に選ばれました。

今後もサステナビリティ経営を重要視するとともに、サプライヤーと協働して脱炭素を推進し、持続可能な社会の実現に向けて社会的価値と経済的価値の両立をめざす取り組みを 推進していきます。

環境省 30by30への参画

30by30とは2030年までに自国の陸域、海域の少なくとも30%を健全な生態系として効果的に保全保護する活動です。当社は東京都水道局と協働して取り組んでいる秩父多摩甲斐国立公園内の水道水源林の保全活動を通じて、2022年4月、「30by30アライアンス」に参画しました。

環境省 エコ・ファースト企業に認定

2024年4月、環境省のエコ・ファースト制度において、「エコ・ファースト企業」に認定されました。

エコ・ファーストは、企業が環境大臣に対し自らの環境保全に関する取り組みを約束し、環境大臣が「先進的、独自的でかつ業界をリードする事業活動」を行っている企業であることを認定する制度です。当社は以下の約束をしています。

エコ・ファーストの約束

- 1. 資源循環型社会の実現に貢献します。
- 2. 自然と共生社会の実現に向けて、自然環境に対する影響 低減への取り組みを積極的に実施します。
- 3. 脱炭素社会の実現に貢献します。
- 4. インフラや建物の建設を通じて、サステナブルな社会の実現に取り組みます。

当社は、認定企業で構成される「エコ・ファースト推進協議会」にも参画し、環境行政との連携およびエコ・ファースト企業間の連携を強化することにより、環境保全活動の一層の充実・強化の推進を図っています。

環境省 ネイチャーポジティブ経営推進プラットフォームへの参画

ネイチャーポジティブ (自然再興) とは、自然を回復軌道に乗せるため、生物多様性の損失を止め、反転させることを意味しており、2030年までにネイチャーポジティブを実現することが短期目標として掲げられています。

当社は、2025年4月、「NPEパートナーズ」に参画し、自然 資本に根ざした経済の新たな成長につながるチャンスを追求 するとともに、関係者との協業等の取り組みを推進していき ます。

東京都 東京グリーンビズへの参画

東京グリーンビズとは、「自然と調和した持続可能な都市」を めざし、都民や企業の皆さまなどさまざまな方々とともに、東 京の緑を「まもる」「育てる」「活かす」取り組みを進める、100 年先を見据えた緑のプロジェクトです。

2024年7月、「東京グリーンビズ・コラボレーションパートナー」に登録し、工事現場におけるポスター掲示や東京グリーンビズDAYへの参加、講演などを行い、東京都と協働して認知度向上に努めています。

作業所へのポスター掲示

東京グリーンビズDAYでの講演

内閣官房 水循環 ACTIVE 企業認証の取得

内閣官房水循環政策本部は、水循環に資する企業の取り組みを積極的に登録・認証し、インセンティブを高めることで、企業の取り組みをより一層促進し、社会全体で水循環に向き合うことができるよう「水循環企業登録・認証制度」を創設しました。

当社は、2024年10月、人材資金カテゴリー部門で「水循環ACTIVE企業」の認証を取得しました。

また、2025年1月に国土交通省で開催された「水循環企業連携フェア」では、東京都水道局とともにパネルセッションに参加し、「てっけんの森」活動を通じて全国各地で健全な水循環の維持・回復に努めている事例を紹介しました。

生物多様性に配慮した事業活動の推進

てっけんの森づくり

当社グループは、2021年9月に東京都水道局の「みんなでつくる水源の森実施計画2021」に賛同し「東京水道~企業の森(ネーミングライツ)協定」を締結、2023年2月には宮城県の「みやぎの里山林協働再生支援事業」に参画、同年11月に大阪府の「大阪府アドプトフォレスト制度」に賛同し、社会的課題を実践的に学ぶ活動として全国3か所で「てっけんの森づくり」を行っています。

「てっけんの森づくり」は自然環境と触れ合い健全な森林を維持保全することで、各地の水循環の維持・回復が図られるとともに、周辺の森林や河川に生息する動植物の生態系保護につながります。当社グループは、この活動を通じて環境意識向上に努めています。

〈森づくりと水循環の関係〉

東京の森: 一級河川「多摩川」 水系の水源林づくり 宮城の森: 一級河川「鳴瀬川」 水系の里山林づくり 大阪の森: 一級河川「淀川」 水系の環境林づくり

間伐作業(東京)

施工段階での生物多様性への配慮

サケ・マス、河川環境への配慮

北海道山越郡長万部町で施工している北海道新幹線栄原高架橋工事では、長万部川の河川内工事においてサケ・マス遡上時期(9月~4月)を避けた時期に施工する計画にしました。また河川の濁水防止対策として大型土嚢による仮締切を行い、溜まった水は沈殿槽を介して河川放流しました。河川内工事施工中は濁度とPHを上流域下流域ともに測定し、河川への影響を最小限に留めるよう配慮しています。

土嚢による濁水拡散防止

オイルフェンスの設置

濁度測定

PH測定

希少猛禽類保全の取り組み

福井県大野市で施工している大野油坂道路南深瀬橋上部 工事周辺は、ミサゴ、オオタカ、イヌワシなどといった絶滅危 惧種である希少猛禽類が生息しているエリアであるため、環 境保全に努めながら工事を行っています。

自然環境との調和を図るため、騒音振動対策として低騒音型の重機の使用、騒音振動が発生する発電機の使用を控える、光対策として指向性の高いLED照明の採用、反射

チョッキの使用禁止、粉塵対策として工事車両通路への敷鉄 板配置、定期的な散水養生など、生態系への影響を極力及 ぼさないよう努めています。

騒音対策(緊張作業時無線利用)

運河の汚濁防止対策を実施

東京都港区で施工している高浜橋旧橋橋脚撤去工事では、高浜西運河内に仮締切鋼矢板を打設し、内部の水を排水し旧構造物基礎杭を引き抜く計画にしました。排水による運河の汚濁防止対策として濁水プラントを設置し、東京都港湾局の処理基準を満たした水のみ放流し、運河へ影響が及ばないよう努めました。

濁水処理プラント

水質検査