ヒートパイプを利用したコンクリートのクーリング方法の開発と実用化

5

伊吹 真一*1·柳 博文*2

概 要

マスコンクリートのひび割れ抑制対策として,断面内に熱移動量の大きなヒートパイプを 設置し,コンクリートの水和熱による温度上昇を抑制する方法を開発した。ヒートパイプは 作動液の気化により熱移動が発生するメカニズムであり,一般的なコンクリートの温度応力 解析への適用には解析用の熱伝導率を設定することが必要となる。

そこで,実構造物での計測および模型実験を通して,ヒートパイプを利用したパイプクー リングによるコンクリートの温度低下量を測定し,解析用物性値の提案とそれを用いた解析 により,ひび割れ抑制効果の検証を実施した。

キーワード:マスコンクリート、ヒートパイプ、パイプクーリング、温度応力解析

DEVELOPMENT AND PRACTICAL APPLICATION OF THE CONCRETE COOLING METHOD USING HEAT PIPES

Shinichi IBUKI *1, Hirofumi YANAGI *2

Abstract

As a means to control cracking of mass concrete, we have developed a method of controlling temperature rises in the concrete, caused by the hydration heat of concrete, through an arrangement of heat pipes with a large heat transmission capacity which are laid in a section of the concrete. The arrangement of heat pipes is a mechanism to facilitate heat transmission through vaporization of a working fluid. Therefore, it is necessary to set a heat transmission factor which is designed for thermal stress analysis of general concrete. Keeping this need in mind, we measured an actual structure and a mock-up test, where the drop in concrete temperature was measured by pipe cooling to propose an analytic physical value. We validated the crack control effect by using physical properties.

Keywords: mass concrete, heat pipe, pipe cooling, thermal stress analysis

^{*1} Foundation / Structure Research and Development Group, Engineering Department, Civil Engineering Division

^{*2} Manager, Foundation / Structure Research and Development Group, Engineering Department, Civil Engineering Division

ヒートパイプを利用したコンクリートのクーリング方法の開発と実用化

伊吹 真一*1·柳 博文*2

1. はじめに

近年の技術提案型発注工事は、品質向上や耐 久性向上をキーワードとしたコンクリートの初 期欠陥を減少させる技術が求められている。特 にマスコンクリートでは、セメントの水和発熱 によるひび割れがテーマとなるケースが増えて いる。

従来より橋脚等のマスコンクリート対策とし て、コンクリート内にパイプを設置し、冷却水 を循環させるパイプクーリングが実施されてき た。しかし、この場合、冷却水のプラント設置 が必要であり、コストの高さが課題となってい た。そこで、熱移動量の大きなヒートパイプを 用い、コンクリートの水和熱による温度上昇を 抑制する簡易な方法を開発した。

ヒートパイプを利用したパイプクーリングは, 熱移動量の大きい棒状ヒートパイプをマスコン クリート内に設置し,高温になる内部熱をヒー トパイプにより移動させ,外部に熱を放出させ る工法である。本工法は,冷却水の循環が無い 簡便なパイプクーリングで,冷却水の循環管 理・温度調整を行う装置が不要になり,大量の 水の調達が困難な作業現場においても,必要な 部位のみの温度を制御することができる。

通常,パイプクーリングなどのマスコンクリ ートのひび割れ抑制対策を実施する場合は,事 前に温度応力解析を実施する。解析を行う場合, マスコンクリートのひび割れ制御指針 ¹⁾を用い るのが現状であり,一般に普及しているプログ ラムを含め,有限要素法[FEM]による熱伝導計 算を基本としている。したがって,パイプ内の 蒸気流の移動を利用したヒートパイプを一般の プログラムに適用するためには,クーリングを 構成する各要素について,解析のための見かけ 上の熱伝導率の設定が必要となる。

ヒートパイプを利用したパイプクーリング

2.1 ヒートパイプ

ヒートパイプ²)はパイプ内に冷却媒体となる 少量の作動液が真空状態で密封されており、迅 速な熱移動を可能としている。熱移動のスピー ドは銅棒の数十~数百倍の熱伝導率に相当し、 その原理は路面融雪や電子機器の冷却などに広 く利用されている。

ヒートパイプの動作原理を図-1に示す。ヒ ートパイプの一方を加熱すると、作動液は蒸発 し(潜熱吸収),蒸気流は音速に近いスピードで 低温部に移動する。低温部では蒸気が凝縮して 液体となり熱を放出する(潜熱放出)。

パイプの内部にはウィック(芯)が配置され ており、ウィックの毛細管力や重力を利用して 低温部の液体を高温部に還流する構造となって いる。低温部の液体が高温部に還流することに より、作動液の熱の吸収と放出が連続して起こ り、熱の移動が継続する。

パイプの材質と作動液の種類の組み合わせに

図-1 ヒートパイプの原理

*1 土木本部 エンジニアリング部 基礎・構造グループ *2 土木本部 エンジニアリング部 基礎・構造グループ グループリーダー は、適用温度に応じて種類があるが、本工法で はコンクリートの打設後の温度上昇量を考慮し た温度範囲と扱いやすさを考慮して、ステンレ ス製のコルゲートパイプ(外径27mm)をコン テナとし、作動液にはエアコン等にも使われて いる冷媒R134 aを用いたヒートパイプを使用 した。

2.2 施工概要

パイプクーリングは一般に重力式コンクリー トダムに適用されることが多いが,近年は鉛直 に配置したシース管に冷却水を循環させる方法 で橋脚やボックスカルバート³に適用される事 例が増加している。

ヒートパイプを利用したパイプクーリングは, コンクリート打込み後 4~6 時間後のコンクリ ートが硬化し始めた時点で,図-2に示すよう に,あらかじめ 50~75cm 間隔に埋設した直径 50mm 程度の鋼製シース管にヒートパイプを 挿入し,その後に水を注入する。コンクリート 内部の熱は,鋼製シースおよび水を介してヒー トパイプに熱伝達され,空気中に放出される。

また,ヒートパイプの空気中に突出した部分 を扇風機等で送風することにより,放熱を促進 してヒートパイプの熱移動作用を増強すると, コンクリートのクーリング効果が高くなる。

2.3 工法の特徴

従来のパイプクーリングでは大量の水と冷却 装置等のプラント設備が必要であるが,本工法 はプラントが不要であるため低コストとなる。 また,従来工法では,循環に必要な大量の水の 確保,および排水方法が問題となり,施工でき る現場が限られていた。本工法は大量の水の調 達が困難な現場や小規模な工事においても適用 が可能である。

ヒートパイプは繰返しの使用が可能であるため, RC 橋脚等の多ロットのコンクリート打込みのある現場ではコスト低減効果を得やすい。 また,施工中は水温の調整等の管理が不要であるため,施工の省力化も図れる。

3. ヒートパイプの適用性の確認

コンクリートの水和熱による温度上昇を,ヒ ートパイプによりクーリングすることの適用性 について,模型試験体を製作し確認試験を行っ た。

確認試験は、ヒートパイプの有無により、コ ンクリート試験体の水和熱による温度上昇の違 いを計測してヒートパイプのクーリングに関す る適用性を確認した。

3.1 模型試験体および計測概要

模型試験体はクーリング無し(試験体 No.1) とクーリング有り(試験体 No.2)の2体とし比 較検討を行った。ヒートパイプによるクーリン グを行った試験体 No.2の形状寸法を図-3に 示す。試験体寸法は1m×1m×高さ1.5mとし, 側面および底面は型枠+断熱材としたマスコン

クリートを模擬したものである。断熱材は発泡 スチロール(厚さ50mm)で、型枠の内側に設 置した。橋脚等の一般的なコンクリート構造物 を想定し、コンクリート温度が最大70℃程度と なるよう表-1の配合とした。

表-1 配合表

	粗骨材 水十	水ヤメ	zメ ト比 約 率(%)	単位量(kg/m ³)				
セメント 種類	の最大 寸法 (mm)	ホモナ ント比 (%)		水 W	セメト C	細骨材 S	粗骨材 G	AE 減水剤
Ν	20	44.2	42.4	190	430	689	963	4.3

コンクリート打込み後,鋼製シース管にヒー トパイプを挿入した。計測は,熱電対を用いて コンクリート内部・ヒートパイプ表面・シース 表面の温度およびシース内の水温を測定した。 なお,室内で試験を行い外気温は20℃一定とな るように空調を行った。

3.2 実験結果

試験体に配置された熱電対により計測された 温度から求めた断面Aの最高温度分布図を図-4に示す。クーリングの有無で試験体の最高温 度分布を比較すると、 ヒートパイプの周囲の温 度の低下が確認できる。試験体中心部の着目点 1のコンクリート温度を比較すると、試験体 No.1が74.1℃であるのに対し, 試験体No.2のヒ ートパイプ周囲の温度は65.1℃であった。試験 体No.2でコンクリート温度が最大となる着目 点2の温度履歴を試験体No.1の温度履歴ととも に図-5に示す。着目点2では最高温度時にク ーリングにより2.4℃の温度差が確認できた。そ の後も温度差が拡大しており、ヒートパイプは、 クーリングの実施期間中作動し続け、放熱が持 続してコンクリート温度の上昇を抑制できるこ とが確認できた。

最高温度時のヒートパイプの表面温度の分布 を図-6に示す。ヒートパイプの表面の温度は、 シース内の水の対流の影響で位置によらず概ね 一定の温度であった。また、気中部はパイプ中 間部より先端部の温度が高くなっている。これ は、放熱区間のなかでもより先端部で作動液の 蒸気が凝集し潜熱放出を行うためと考えられる。

また、図-7に示す断面Bの最高温度分布で は、ヒートパイプ表面とシース表面の温度の差 は3.1℃であり、コンクリートからヒートパイプ 表面まで連続的な温度低下がみられ、シース内 の水が熱移動の障害となっていないことがわか る。

これらの試験結果より, コンクリートの温度 上昇の抑制にヒートパイプが有効であることが 確認できた。

試験体 No.1 クーリング無し 試験体 No.2 クーリング有り

図-4 最高温度分布図(断面 A)

図-5 温度履歴の比較(着目点2)

3.3 解析用物性値の設定

ヒートパイプを利用したパイプクーリングを 温度解析に適用する場合,ヒートパイプの熱移 動特性およびシース内の水の熱伝導特性を考慮 する必要がある。そこで,一般的な温度応力解 析用プログラムでヒートパイプの冷却効果を評 価するために,ヒートパイプおよびシース管内 の水の見かけの熱伝導率を試験結果から逆解析 して算定した。すなわち,模型試験体で得られ た計測温度結果を用いて,試験体No.1を基準と し,試験体No.2との温度差をヒートパイプに関す る解析用の物性値を求めた。

温度解析モデルを図-8に示す。モデル上の ヒートパイプおよびシース内の水については, 固体要素として見かけの熱伝導率を与えて評価 することとした。解析に用いた熱物性値および 境界条件を表-2に示す。なお,計測結果で求 められなかった物性値については,指針¹⁾に示 されている一般的な値を用いた。先述した図-7の最高温度分布図では,フィッティングで特 に着目した断面Bの実測値と解析結果を併せて 示している。

ヒートパイプの見かけの熱伝導率は 40000W/mKとし、密度および比熱については 銅と同じとした。これは、ヒートパイプの要素 モデルとして銅の約100倍の熱伝導特性を持つ 要素として評価したものである。ヒートパイプ の熱移動特性は、温度条件や長さなどにより変 化する²⁾が、ここでは一定値として設定した。

シース内の水の見かけの熱伝導率については, シース表面・シース内の水・ヒートパイプ表面 の実測値の温度勾配に着目して解析値を求めた。 その結果,見かけの水の熱伝導率は1.8W/mKと なり,水の一般的な熱伝導率の3倍の値となっ た。これは,水の対流の影響と金属シースの影 響を含んだ値と考えられる。

ヒートパイプの気中放熱部の表面熱伝達率は 20W/m²Kであり,一般的なメタルフォームの熱 伝達率¹⁾より大きい結果となった。今回使用し ているヒートパイプのコンテナはステンレス製 のコルゲート管であるため表面積が大きいこと による影響と考えられる。

図-7 最高温度時温度分布(断面 B)

表-2 解析に用いた物性値

項目	物	備考	
コンク リート	熱伝導率	2.7 W/mK	
	密度	2400 kg/m ³	
	比熱	1.15 J/g°C	
	断熱温度特性	$Q(t)=Q_{\infty}(1-e^{-\gamma t})$	計測より近似
		Q_{∞} =68.6, γ =1.67	
	打込み温度	18.0 °C	実績より
	型枠+断熱材	1.5 W/m ² °C	計測・逆解析より
とート パ イプ	見かけの熱伝導率	40000 W/mK	銅の約 100 倍
	密度	8940 kg/m ³	銅と同じ
	比熱	0.38 J/g°C	銅と同じ
	表面熱伝達率	$20 W/m^2K$	計測・逆解析より
	表面熱伝達率	50 NI/ 917	計測・逆解析より
	扇風機による送風	70 W/m²K	風速 5m/s 程度
シース	見かけの熱伝導率	1.8 W/mK	計測・逆解析より
内	密度	1000 kg/m ³	
の水	比熱	4.2 J/g°C	
環境	外気温	20°C	

3.4 送風による放熱効果向上

コンクリート打設後 4 日過ぎより,試験体 No.2 のヒートパイプの表面露出部に扇風機を 用いて送風を行い,放熱の促進を行った。扇風 機の風速は約 5m/s であった。

断面Bに配置された熱電対が計測した温度変 化を図-9に示す。扇風機の送風によりヒート パイプ表面温度は10℃程度減少した。それに伴 い、シース内の水温および周囲のコンクリート 温度も低下していることが確認できた。これは、 ヒートパイプの表面露出部の放熱を促進させた ことで、コンクリート内部の吸熱も促進されク ーリング効果が高まったためと考えられる。

気中部の表面熱伝達率について,表-2の物 性値を用いた解析モデルをもとに,同様の逆解 析を実施したところ,今回の条件におけるヒー トパイプの表面熱伝達率はおおよそ 70W/m²K という数値を得た。

3.5 ミストによる放熱効果の向上

ミストファンを用いたヒートパイプの放熱促 進効果について、模型試験体を作成して比較検 討を行った。試験体寸法は1m×1m×高さ1.1m とし、断熱型枠としたものである。

ミストファンは**写真-1**に示す 10m³水槽か らポンプを用いて給水するもので、満水状態か ら約1日程度連続運転が可能であった。水温は 15~20℃程度であり、ヒートパイプ表面は常に 水滴が付いている状態であった。試験体に配置 された熱電対により計測された温度から求めた 最高温度分布図を図-10に示す。ヒートパイプ の表面温度は 8.4℃低下し,着目点 2 において 3.5℃のクーリング効果の向上がみられた。

本計測結果を用いて、ミストファンによる放 熱促進を行っているヒートパイプの表面熱伝達 率の逆解析を行ったところ、今回の条件におけ る表面熱伝達率はおおよそ 100000 W/m²K と いう数値が得られた。

写真-1 送風による温度変化(断面 B)

図-10 最高温度分布図(中央断面)

実構造物での温度計測およびクーリン グ効果の検証

4.1 概要

計測対象構造物は,国土交通省中国地方整備 局「東広島・呉道路馬木高架橋PC上部工事」 に含まれる4径間PCラーメン高架橋の端部横 桁である。端部横桁は2.5m×1.95m×5.4mの

図-11 端部横桁ヒートパイプ・温度計測配置図

マッシブな構造であり、コンクリートも早強セ メントを用いているため、横桁中心部の温度が 100℃近くになる部位である。そのため、コン クリート内部と外部の温度差による表面ひび割 れの発生が予想されていた。ヒートパイプを利 用したパイプクーリングは、マッシブな端部横 桁において温度上昇を抑制し、ひび割れ発生を 抑制することを目的として行った。

4.2 計測概要

計測対象横桁の寸法形状およびヒートパイプ の配置を図ー11に示す。ヒートパイプの設置位 置は、500mm ピッチを基本とし、PC 鋼材・鉄 筋に干渉しないように決定した。

対象が PC 構造物であり設計基準強度が 40N/mm² で、予想される水和熱による温度上 昇量が高い。そのため、ヒートパイプの長さは 5m とし、コンクリート内部に 2m 埋込み、気 中の放熱区間を 3m とし、放熱面積を確保して ヒートパイプの効率拡大を図った。また、ヒー トパイプの放熱部に送風機による送風冷却も同 時に実施した(**写真-2**)。ヒートパイプによ るクーリングは、コンクリート打設後4時間後 から3日間実施した。

ここで,比較対象となるクーリングを行わない「無対策ケース」がないため,温度解析によ

写真-2 ヒートパイプを利用したパイプクー リング状況

り無対策のケースを求め、ヒートパイプを利用 したクーリングの効果を確認することとした。

クーリングを行う端部横桁に熱電対を用い, コンクリート内部・ヒートパイプ表面・シース 表面の温度,シース内の水温および外気温の計 測を実施した。熱電対の配置は,図-11に示す ように,コンクリート打ち込み高さの中間で, 横桁の中央断面(断面 A)に配置した。

4.3 温度計測結果と解析値との比較

ヒートパイプを利用したクーリングを実施し た端部横桁について,熱電対による計測結果と 模型試験で得られたヒートパイプの熱物性値を 用いた温度解析結果の比較を行った。解析は, コンクリートの発熱特性,熱的性質および強度 特性はマスコンクリートのひび割れ制御指針¹⁾ に基づき,実測された外気温に対して行った。 コンクリートの配合表を**表-3**に示す。

中央断面において最も高いコンクリート温度 が測定された着目点2における無対策(解析結 果)と実測値の最高温度の比較を表-4に示す。 また,温度解析で得られた最高温度分布図を図 -12に,着目点2の温度履歴を図-13に示す。 ヒートパイプを設置した実測値と無対策の解析 結果を比較すると,コンクリート内部の着目点 2の低下量は13.4℃であった。ヒートパイプを 利用したクーリングを行うことにより,端部横 桁の水和熱による温度上昇が抑制されているこ とが確認できた。

図-14 に中央断面(断面 A)の最高温度の実 測値とそれに対応する温度解析結果を比較して 示す。ヒートパイプを使用した場合の温度解析 結果と熱電対による実測値は概ね一致しており,

無対策

表-3 配合表

	粗骨材水セメ				単位量(kg/m ³)					
セメント 種類	の最大 寸法 (mm)	ホモン ント比 (%) 細骨材 率(%)	水 W	セメ ント C	細骨材 S	粗骨材 G	高性能 AE 減水剤			
Н	20	38	42.1	170	447	717	996	4.92		

表-4 着目点2における最高温度の比較

			着目点1	着目点2
			横桁中心	コンクリート内部
無対策	解析	(A)	101.4	100.0
クーリング実施	実測	(B)	57.1	86.6
クーリング効果	(B) –	-(A)		-13.4

単位:℃

図-13 温度履歴の比較(着目点2)

クーリング実施

図-12 最高温度分布図

図-14 最高温度分布の比較(断面 A)

図-15 最小温度ひび割れ指数の分布

今回採用した温度解析の手法は妥当と考えられ る。ただし、今回の解析用物性値は少ない測定 結果より求めているため、今後はさまざまな環 境条件に対応できるよう検証を行っていきたい。

4.4 ヒートパイプによるクーリングの 効果

解析結果として,最小温度ひび割れ指数の分 布を図-15 に示す。図をみると,ヒートパイプ を設置していない無対策の場合は,表面の大部 分で指数が 1.0 を下回っている。一方,ヒート パイプを設置した場合は指数が大きくなり,指 数が小さくなりやすい隅角部の着目点2でもひ び割れ指数は 1.21 となる。また,ひび割れ発生 確率が5%以下とされる 1.81を上回る部分も拡 大している。これらの結果から,ヒートパイプ を利用したパイプクーリングにひび割れ抑制効 果のあることが確認できた。

5. まとめ

コンクリートの温度上昇抑制のためのヒート パイプの適用について検討した。

検討の結果、以下の知見を得た。

- (1) ヒートパイプを利用したパイプクーリングは、コンクリートの水和熱による温度上昇量の低減が可能であり、ひび割れ抑制対策として有効な手段である。
- (2) ヒートパイプによるパイプクーリングの温度解析は、ヒートパイプの熱移動のメカニズムやシース内の水の対流といった要素を見

かけの熱伝導率に置き換えることで簡易的 に解析できる。

(3) ヒートパイプの表面露出部に送風を行うことで放熱を促進させ、クーリング効果を向上させることができる。

今後は, 放熱促進方法を改良することにより, より高いクーリング効果が期待できると考えら れ, その検証を行っていく予定である。

参考文献

- (社)日本コンクリート工学協会:マスコンク リートのひび割れ制御指針 2008
- 高岡道雄,馬渡恒明,坂谷益司,望月正孝, 益子幸一,伊藤雅彦:長尺ヒートパイプの開 発とヒートパイプの応用製品,藤倉電線技報, 第68号, pp.50-63, 1984
- 3)神崎浩二,吉本靖俊,樋口晃,村上裕治:マ スコンクリート構造物の温度ひび割れ制御, コンクリート工学年次論文集, Vol.28, No.1, pp.1283-1288, 2006